Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-{2-Hydroxy-6-[3-(pyrrol-1-yl)propoxy]phenyl}ethanone

Ali Ourari,^a Djouhra Aggoun^a and Sofiane Bouacida^{b*}

^aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and ^bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 1 March 2012; accepted 10 March 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.128; data-to-parameter ratio = 14.7.

In the title compound, $C_{15}H_{17}NO_3$, the mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. The molecule contains an intramolecular $O-H \cdots O$ hydrogen bond. In the crystal, weak $C-H\cdots\pi$ interactions link the molecules into chains along [010].

Related literature

For the synthesis and applications of similar compounds and their derivatives, see: Wu & Lu (2003); Saraswat et al. (2006); Smith et al. (2003); Dong et al. (2010); Deronzier & Moutet (1996); MacDearmid (2001); Srinivasan et al. (1986); Coche-Guerente et al. (1995); Ourari et al. (2008); Khedkar & Radhakrishnan (1997); Huo et al. (1999).

Experimental

Crystal data

C15H17NO3 $M_r = 259.3$ Triclinic, P1 a = 7.741 (2) Å b = 9.230(1) Å c = 10.464 (1) Å $\alpha = 71.63 \ (2)^{\circ}$ $\beta = 75.222 (1)^{\circ}$

Data collection

Nonius KappaCCD diffractometer 4238 measured reflections 2586 independent reflections

0.15 \times 0.08 \times 0.04 mm

 $\gamma = 82.081 \ (1)^{\circ}$

Z = 2

V = 684.7 (2) Å³

Mo Ka radiation

 $\mu = 0.09 \text{ mm}^-$

T = 295 K

1995 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$

nephonicni

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.128$	independent and constrained
S = 1.05	refinement
2586 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is is the centroid of the N1/C12-C15 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O2	0.98 (2)	1.578 (19)	2.498 (2)	153.4 (18)
$C5-H5\cdots Cg^{i}$	0.93	2.90	3.641 (2)	138
$C11 - H11B \cdots Cg^{ii}$	0.97	2.74	3.3973 (19)	125

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 2, -z.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1 France) for helpful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5428).

References

- Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
- Coche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1995). Anal. Chim. Acta. 311. 23-30.
- Deronzier, A. & Moutet, J. C. (1996). Coord. Chem. Rev. 147, 339-371.
- Dong, W. K., Sun, Y. X., Zhao, C. Y., Dong, X. Y. & Xu, L. (2010). Polyhedron,
- 29, 2087-2097.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Huo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999).
- Thin Solid Films, 350, 5-9.
- Khedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167-172.
- MacDearmid, A. G. (2001). Rev. Mod. Phys. 73, 701-712.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). J. Electrochem. Commun. 10, 1736-1739.
- Saraswat, K., Prasad, R. N., Ratnani, R., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2006). Inorg. Chim. Acta, 359, 1291-1295.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. A., Tasker, P. A. & White, D. J. (2003). Coord. Chem. Rev. 241, 61-85. Srinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309-2320
- Wu, S. & Lu, S. (2003). J. Mol. Catal. A, 198, 29-38.

supplementary materials

Acta Cryst. (2012). E68, o1083 [doi:10.1107/S1600536812010641]

1-{2-Hydroxy-6-[3-(pyrrol-1-yl)propoxy]phenyl}ethanone

Ali Ourari, Djouhra Aggoun and Sofiane Bouacida

Comment

The synthesis of new derivatives containing both a pyrrole ring and salicyaldehyde moiety is of a great interest since they are currently used as precursors for chelating agents especially those of Schiff bases (Wu *et al.*, 2003; Saraswat *et al.*, 2006) and oximes (Smith *et al.*, 2003; Dong *et al.*, 2010). These compounds may also be involved in the elaboration of modified electrodes by anodic (Deronzier & Moutet, 1996) or by chemical oxidation (MacDearmid *et al.*, 2001). These types of materials can be applied in catalysis, electrocatalysis and sensors (Srinivasan *et al.*, 1986; Coche-Guerente *et al.*, 1995; Ourari *et al.*, 2008). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of a functionalized conducting π -conjugated polymers such as as those of polypyrrole and polyaniline (Khedkar *et al.*, 1997; Huo *et al.*, 1999).

We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. The mean planes of the pyrrole and benzene rings form a dihedral angle of 81.92 (7)°. There is an intramolecular O—H…O hydrogen bond present. In the crystal, there are weak C—H… π interactions (Table 1) which form chains of dimers along [010] (Fig. 2).

Experimental

A solution of 152 mg (1 mmol) of 2,6-dihydroxyacetophenone was added to a solution containing 187 mg (1 mmol) of 1bromopropyl-3-N-pyrrol and 181 mg (1.7 mmol) of potassium carbonate under argon atmosphere. The mixture was refluxed for 45 h and was allowed to stand at room temperature. After extraction by dichloromethane and purification by chromatography on silica gel using dichloromethane as eluent. Thus, 153 mg of pure compound (I) was recovered, corresponding to the yield of 59%. The suitable single crystals were then obtained from dichloromethane solution by slow evaporation.

Refinement

H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C) with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic})$ and $C_{methylene}$) or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. Atom H3 was located in a difference Fourier map and refined with $U_{iso}(H) = 1.2U_{eq}(O)$

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 2

The packing showing weak C—H··· π interactions involving the centroid (in pink) of the pyrrole ring as dashed lines.

1-{2-Hydroxy-6-[3-(pyrrol-1-yl)propoxy]phenyl}ethanone

Crystal data	
C ₁₅ H ₁₇ NO ₃	Z = 2
$M_r = 259.3$	F(000) = 276
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.258 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.741 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.230(1) Å	Cell parameters from 2211 reflections
c = 10.464 (1) Å	$\theta = 1.0-26.4^{\circ}$
$\alpha = 71.63 (2)^{\circ}$	$\mu=0.09~\mathrm{mm}^{-1}$
$\beta = 75.222 (1)^{\circ}$	T = 295 K
$\gamma = 82.081 (1)^{\circ}$	Plate, white
$V = 684.7 (2) \text{ Å}^3$	$0.15 \times 0.08 \times 0.04 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Radiation source: Enraf Nonius FR590 Graphite monochromator Detector resolution: 9 pixels mm ⁻¹ CCD rotation images, thick slices scans	2586 independent reflections 1995 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -11 \rightarrow 11$
4238 measured reflections	$l = -11 \rightarrow 13$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.128$ S = 1.05 2586 reflections 176 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0614P)^2 + 0.0857P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta \alpha_{-1} = -0.17 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.22766 (19)	0.41969 (15)	0.52869 (14)	0.0461 (3)	
C2	0.13789 (18)	0.35148 (15)	0.66752 (14)	0.0462 (3)	
C3	0.1027 (2)	0.19569 (17)	0.70372 (16)	0.0543 (4)	
C4	0.1559 (2)	0.11311 (18)	0.60838 (19)	0.0641 (4)	
H4	0.1327	0.0104	0.6342	0.077*	
C5	0.2426 (2)	0.18421 (18)	0.47626 (18)	0.0653 (5)	
Н5	0.278	0.1286	0.4126	0.078*	
C6	0.2790 (2)	0.33656 (17)	0.43500 (16)	0.0571 (4)	
H6	0.3378	0.3828	0.3445	0.069*	
C7	0.0815 (2)	0.43219 (18)	0.77474 (15)	0.0523 (4)	
C8	0.1265 (2)	0.59134 (19)	0.75300 (18)	0.0631 (4)	
H8A	0.0639	0.6615	0.6879	0.095*	
H8B	0.2531	0.5999	0.7177	0.095*	
H8C	0.0914	0.6152	0.8393	0.095*	
C9	0.3468 (2)	0.64362 (16)	0.35422 (14)	0.0503 (4)	
H9A	0.2802	0.633	0.2911	0.06*	
H9B	0.4663	0.5963	0.3328	0.06*	

C10	0.3574 (2)	0.81022 (16)	0.33794 (15)	0.0503 (4)
H10A	0.4256	0.8209	0.4001	0.06*
H10B	0.2381	0.8572	0.3608	0.06*
C11	0.4473 (2)	0.88841 (17)	0.19002 (16)	0.0605 (4)
H11A	0.5719	0.851	0.1736	0.073*
H11B	0.3915	0.8598	0.1291	0.073*
C12	0.2945 (2)	1.14975 (17)	0.12267 (16)	0.0559 (4)
H12	0.1838	1.1193	0.1252	0.067*
C13	0.3403 (2)	1.29658 (18)	0.08711 (17)	0.0612 (4)
H13	0.2669	1.3843	0.0614	0.073*
C14	0.5179 (3)	1.29123 (19)	0.09628 (18)	0.0657 (5)
H14	0.5847	1.3749	0.0775	0.079*
C15	0.5757 (2)	1.14127 (19)	0.13775 (17)	0.0621 (4)
H15	0.6892	1.1045	0.1524	0.074*
N1	0.43895 (17)	1.05482 (13)	0.15398 (12)	0.0517 (3)
01	0.25933 (15)	0.57023 (11)	0.49358 (10)	0.0550 (3)
O2	-0.00716 (18)	0.36498 (15)	0.89029 (12)	0.0776 (4)
O3	0.01756 (18)	0.11918 (14)	0.83236 (13)	0.0736 (4)
H3	-0.005 (3)	0.197 (2)	0.882 (2)	0.088*

Atomic displacement parameters $(Å^2)$

	I 711	T 122	I 733	I /12	<i>I</i> /13	1 /23
	U	U	U	U	U	U *
C1	0.0511 (8)	0.0426 (7)	0.0465 (8)	-0.0031 (6)	-0.0141 (6)	-0.0132 (6)
C2	0.0462 (8)	0.0477 (8)	0.0460 (8)	-0.0038 (6)	-0.0141 (6)	-0.0121 (6)
C3	0.0558 (9)	0.0518 (8)	0.0538 (9)	-0.0111 (6)	-0.0175 (6)	-0.0059 (7)
C4	0.0801 (12)	0.0467 (8)	0.0701 (11)	-0.0104 (7)	-0.0237 (9)	-0.0155 (8)
C5	0.0868 (13)	0.0530 (9)	0.0645 (10)	-0.0031 (8)	-0.0200 (9)	-0.0269 (8)
C6	0.0730 (11)	0.0512 (8)	0.0489 (9)	-0.0053 (7)	-0.0107 (7)	-0.0188 (7)
C7	0.0480 (8)	0.0637 (9)	0.0467 (8)	-0.0041 (6)	-0.0105 (6)	-0.0180 (7)
C8	0.0653 (10)	0.0705 (11)	0.0600 (10)	-0.0061 (8)	-0.0056 (7)	-0.0340 (8)
C9	0.0562 (9)	0.0495 (8)	0.0430 (8)	-0.0050 (6)	-0.0084 (6)	-0.0118 (6)
C10	0.0575 (9)	0.0465 (8)	0.0455 (8)	-0.0052 (6)	-0.0110 (6)	-0.0111 (6)
C11	0.0778 (11)	0.0459 (8)	0.0492 (9)	-0.0042 (7)	-0.0038 (7)	-0.0103 (7)
C12	0.0514 (9)	0.0570 (9)	0.0536 (9)	-0.0068 (7)	-0.0066 (6)	-0.0108 (7)
C13	0.0689 (11)	0.0508 (9)	0.0560 (9)	-0.0013 (7)	-0.0079 (7)	-0.0105 (7)
C14	0.0820 (12)	0.0549 (9)	0.0598 (10)	-0.0214 (8)	-0.0160 (8)	-0.0093 (8)
C15	0.0612 (10)	0.0631 (10)	0.0592 (10)	-0.0127 (7)	-0.0178 (7)	-0.0068 (8)
N1	0.0588 (8)	0.0448 (7)	0.0453 (7)	-0.0061 (5)	-0.0065 (5)	-0.0076 (5)
01	0.0754 (7)	0.0439 (6)	0.0426 (6)	-0.0116 (5)	-0.0041 (5)	-0.0123 (4)
O2	0.0910 (9)	0.0849 (9)	0.0502 (7)	-0.0214 (7)	0.0058 (6)	-0.0209 (6)
03	0.0885 (9)	0.0633 (8)	0.0604 (8)	-0.0263 (6)	-0.0079 (6)	-0.0040 (6)

Geometric parameters (Å, °)

C1—O1	1.3609 (17)	С9—Н9А	0.97
C1—C6	1.378 (2)	С9—Н9В	0.97
C1—C2	1.421 (2)	C10—C11	1.512 (2)
C2—C3	1.413 (2)	C10—H10A	0.97
C2—C7	1.480 (2)	C10—H10B	0.97

$C_{3} = 0_{3}$	1 3496 (19)	C11—N1	1 4579 (18)
C3—C4	1.389 (2)	C11—H11A	0.97
C4—C5	1.367 (2)	C11—H11B	0.97
C4—H4	0.93	C12—C13	1.359 (2)
C5—C6	1 381 (2)	C12—N1	1 364 (2)
C5—H5	0.93	C12—H12	0.93
C6—H6	0.93	C13 - C14	1 396 (2)
C7—O2	1 2406 (18)	C13—H13	0.93
C7—C8	1 490 (2)	C14-C15	1 362 (2)
C8—H8A	0.96	C14—H14	0.93
C8—H8B	0.96	C15—N1	1357(2)
C8—H8C	0.96	C15—H15	0.93
C901	1 4297 (17)	03—H3	0.98(2)
C9-C10	1.5042(19)	05 115	0.90 (2)
0, 010	1.5012 (15)		
O1—C1—C6	122.13 (13)	С10—С9—Н9В	109.9
01—C1—C2	116.67 (12)	H9A—C9—H9B	108.3
C6—C1—C2	121.19 (13)	C9—C10—C11	108.84 (12)
C3—C2—C1	116.77 (13)	C9—C10—H10A	109.9
C3—C2—C7	118.82 (13)	C11—C10—H10A	109.9
C1—C2—C7	124.41 (13)	C9—C10—H10B	109.9
O3—C3—C4	116.60 (14)	C11—C10—H10B	109.9
O3—C3—C2	121.99 (15)	H10A—C10—H10B	108.3
C4—C3—C2	121.41 (14)	N1—C11—C10	114.44 (13)
C5—C4—C3	119.40 (14)	N1—C11—H11A	108.7
C5—C4—H4	120.3	C10—C11—H11A	108.7
C3—C4—H4	120.3	N1—C11—H11B	108.7
C4—C5—C6	121.59 (15)	C10—C11—H11B	108.7
C4—C5—H5	119.2	H11A—C11—H11B	107.6
С6—С5—Н5	119.2	C13—C12—N1	108.26 (14)
C1—C6—C5	119.62 (15)	C13—C12—H12	125.9
С1—С6—Н6	120.2	N1—C12—H12	125.9
С5—С6—Н6	120.2	C12—C13—C14	107.29 (15)
O2—C7—C2	119.14 (14)	С12—С13—Н13	126.4
O2—C7—C8	117.11 (14)	C14—C13—H13	126.4
C2—C7—C8	123.74 (13)	C15—C14—C13	107.58 (15)
С7—С8—Н8А	109.5	C15—C14—H14	126.2
С7—С8—Н8В	109.5	C13—C14—H14	126.2
H8A—C8—H8B	109.5	N1—C15—C14	108.19 (15)
С7—С8—Н8С	109.5	N1—C15—H15	125.9
H8A—C8—H8C	109.5	C14—C15—H15	125.9
H8B—C8—H8C	109.5	C15—N1—C12	108.68 (13)
O1—C9—C10	108.82 (11)	C15—N1—C11	125.99 (14)
О1—С9—Н9А	109.9	C12—N1—C11	125.22 (13)
С10—С9—Н9А	109.9	C1—O1—C9	118.35 (11)
O1—C9—H9B	109.9	С3—О3—Н3	102.9 (12)
			()
O1—C1—C2—C3	179.16 (12)	C3—C2—C7—C8	173.87 (14)
C6—C1—C2—C3	-0.6 (2)	C1—C2—C7—C8	-5.6 (2)

-1.4 (2)	O1—C9—C10—C11	-179.11 (12)
178.83 (13)	C9-C10-C11-N1	170.05 (13)
-179.70 (13)	N1—C12—C13—C14	0.30 (18)
0.8 (2)	C12—C13—C14—C15	-0.2 (2)
0.9 (2)	C13—C14—C15—N1	0.10 (19)
-178.57 (13)	C14—C15—N1—C12	0.08 (18)
179.94 (16)	C14—C15—N1—C11	176.39 (15)
-0.7 (3)	C13—C12—N1—C15	-0.24 (18)
0.1 (3)	C13—C12—N1—C11	-176.59 (14)
-179.71 (14)	C10—C11—N1—C15	104.65 (18)
0.1 (2)	C10-C11-N1-C12	-79.63 (19)
0.2 (3)	C6-C1-O1-C9	0.8 (2)
-5.5 (2)	C2-C1-O1-C9	-179.01 (12)
174.99 (14)	C10-C9-O1-C1	176.69 (12)
	-1.4 (2) 178.83 (13) -179.70 (13) 0.8 (2) 0.9 (2) -178.57 (13) 179.94 (16) -0.7 (3) 0.1 (3) -179.71 (14) 0.1 (2) 0.2 (3) -5.5 (2) 174.99 (14)	-1.4 (2) $O1-C9-C10-C11$ 178.83 (13) $C9-C10-C11-N1$ -179.70 (13) $N1-C12-C13-C14$ 0.8 (2) $C12-C13-C14-C15$ 0.9 (2) $C13-C14-C15-N1$ -178.57 (13) $C14-C15-N1-C12$ 179.94 (16) $C14-C15-N1-C11$ -0.7 (3) $C13-C12-N1-C15$ 0.1 (3) $C13-C12-N1-C11$ -179.71 (14) $C10-C11-N1-C15$ 0.1 (2) $C10-C11-N1-C12$ 0.2 (3) $C6-C1-O1-C9$ -5.5 (2) $C2-C1-O1-C9$ 174.99 (14) $C10-C9-O1-C1$

Hydrogen-bond geometry (Å, °)

Cg is is the centroid of the N1/C12–C15 ring.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O2	0.98 (2)	1.578 (19)	2.498 (2)	153.4 (18)
C5—H5···· <i>Cg</i> ⁱ	0.93	2.90	3.641 (2)	138
C11—H11 B ···C g^{ii}	0.97	2.74	3.3973 (19)	125

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*+2, -*z*.